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This paper proposes a novel fuzzy controller based on an adaptive membership function for optimum
power management of a fuel cell hybrid electric vehicle (FCHEV). In the first phase, an electric powertrain
model of the FCHEV is derived and a fuzzy controller is proposed. Then, the fuzzy controller is optimized
using a genetic algorithm. The optimization process is accomplished through simulation for a given
driving cycle. Since, however, the optimized result may vary according to the applied driving cycle for
optimization, it is impossible for one optimized result to cover various driving cycles. In the second phase,
uel cell hybrid electric vehicle
ower distribution algorithm
uzzy controller
daptive membership function
riving pattern recognition

an adaptive membership function based on a stochastic approach is proposed to guarantee optimum
performance from the presented fuzzy controller, even though the driving cycle changes. This controller
is referred to as the ‘Stochastic fuzzy controller’ (SFC) in this study. The SFC employs a stochastic approach
where membership functions can be transformed statistically using a probability evaluated from driving
pattern recognition. Then, driving cycle analysis is performed through off-line simulation and hardware
in a loop simulation (HILS) test for four driving cycles. Finally, the SFC shows the best performance in

onsum
terms of minimum fuel c

. Introduction

Today, local air pollution and climate change caused by con-
entional vehicles threaten the continuous existence of human
eings on Planet Earth. To ameliorate these problems, many coun-
ries have implemented various environmental friendly policies.
hese efforts have motivated the introduction of hybrid vehicles
o resolve energy and environment problems. Generally, a hybrid
ehicle is powered by an internal combustion engine (ICE) and a
attery [1]. Nevertheless, there still exists a possibility of increas-

ng air pollution and global warming because an ICE is used. Among
he alternative power sources for ICEs, the most promising device is
fuel cell. Fuel cells can generate electricity without the emission of
armful exhaust gases such as NOx, HC, with pure water being the
nly reaction product. In addition, fuel cells have a higher efficiency
han ICEs. Thus, many automotive companies have developed a fuel

ell vehicle.

These fuel cell vehicles have a hybrid configuration with a bat-
ery and/or a supercapacitor. The additional power source not only
revents the oxygen starvation problem in the fuel cell (if oxy-
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ption and state-of-charge (SoC) maintenance.
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gen is starved, the cell voltage falls to very low levels or may even
become negative and irreversible damage may eventuate [2]) but
also offers the potential of higher performance and better fuel econ-
omy. In addition, hybridization of a fuel cell stack with a battery or a
supercapacitor decreases the size and the cost of the fuel cell stack
system [3]. Such a vehicle is called a fuel cell hybrid electric vehicle
(FCHEV).

In hybrid vehicles, power distribution between two power
sources is an important factor for minimum fuel consumption and
the maintenance of battery state-of-charge (SoC). For power dis-
tribution, several heuristic approaches have been proposed [4,5]
and use a rule-based algorithm that can be described by using
a state flow. The fuel cell is operated in a highly efficient range,
and an additional power source, either a battery or a supercapaci-
tor, accommodates the load leveling range [6,7]. A fuzzy controller
also has been developed by many research groups [8–14]. Since,
however, it is derived from intuition or heuristic knowledge, this
strategy cannot guarantee optimum power distribution. Accord-
ingly, many research groups have published other optimum power
control strategies using dynamic programming (DP) [1], stochas-

tic dynamic programming (SDP) [15–17], equivalent consumption
minimization (ECMS) [18,19], and an optimized fuzzy controller
with a genetic algorithm (GA) [20–23]. All of these optimum
power control strategies have been developed using a mathemati-
cal model of the hybrid vehicle.

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:yesican@hanyang.ac.kr
mailto:autopark@hanyang.ac.kr
mailto:msunwoo@hanyang.ac.kr
dx.doi.org/10.1016/j.jpowsour.2010.03.081
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Nomenclature

C capacity [F]
d duty
i current [A]
GLEPK GLEPK [L 100 km−1]
L inductance [H]
LHV low heating value [J g−1]
MPGGE MPGGE [mpg]
N number of data
nGene number of genes
nP number of individuals
SoC state-of-charge
o optimization design variables
p probability
P power [W]
Q charge [C]
r electrical resistance [�]
t time [s]
u input vector
v voltage [V]
W mass flow rate [kg s−1]

Greek letters
� density [g L−1]
� efficiency
� scaling coefficient of probability revision function
�a scaling coefficient of probability revision function

Subscripts
batt battery
bus bus line
B battery
C capacitor
DCDC d.c.–d.c. converter
f final time
Gas gasoline
HWFET HWFET driving cycle
int internal component
load load
L inductor or linearization
max maximum value
mov moving value (moving average or standard devia-

tion)
MF membership function
oc open circuit
ref reference value
req required value
SFC stochastic fuzzy controller
SoCref SoC reference value
st fuel cell stack
target fuel cell stack
u input
UDDS UDDS driving cycle
0 initial value

Superscripts
avg average value
desired desired value
modified required value
ref reference value
STD standard deviation
Fig. 1. Parallel-type FCHEV configuration.

Power control strategies for FCHEV have been developed using
static or non-causal electric powertrain models [5,16,17,19,23].
These models cannot describe the dynamic characteristics of the
electric powertrain, such as bus voltage and fuel cell current
behaviour. In following papers [16,17], the bus voltage and the
battery current were calculated using a static equation for a given
battery power; this is non-causal. Uzunoglu and Alam [23] used an
ideal d.c.–d.c. converter model which neglects the effects of para-
sitic elements [24]. Haitao et al. [25] a dynamic model of the electric
powertrain but it was obtained using simplified first-order transfer
functions. Therefore, in this study an electric powertrain model of
the FCHEV is formulated from dynamic differential equations of an
equivalent circuit model that represents the electric powertrain.

As mentioned above, it is considerably important to prevent
oxygen starvation through management of fuel cell current. Most
power control strategies for FCHEVs have disregarded the oxygen
starvation problem [5,14,23], or applied an indirect current man-
agement method; the derivative value of the fuel cell power was
limited instead of the fuel cell current [15–17,19,25]. Therefore, in
this research, a power control strategy, which can modulate the
utilization of the fuel cell current directly, has been developed and
implemented using a fuzzy control algorithm. Then, using a genetic
algorithm process, membership functions (MFs) of the fuzzy con-
troller are optimized for given driving cycles, in order to achieve
minimum fuel consumption and maintenance of the battery SoC.

For the power management of the FCHEV, DP, SDP, pseudo-
SDP and fuzzy optimized using GA can be obtained through the
optimization process for a given driving cycle. Since, however, the
optimized result vary according to the applied driving cycle for
optimization, these approaches cannot guarantee accurate results
for other driving cycles. In order to solve this problem, a power
control strategy, which can be used in various driving cycles, is
proposed. This has been realized using a fuzzy controller based on
adaptive membership functions. The controller is referred to as the
‘Stochastic fuzzy controller’ (SFC) in this study.

This paper presents the dynamic electric powertrain of a
parallel-type FCHEV and demonstrates the operating mechanism
of the SFC. In the first part, an electric powertrain model is
derived from an equivalent circuit model and a power distribu-
tion algorithm using a fuzzy controller is proposed. In addition, the
optimization process of the fuzzy controller using GA, is reported.
In the second part of the paper, the operating mechanism of the
SFC is detailed and a probability evaluation method is proposed to
achieve the accurate adjustment of MFs. Finally, the performance
of the SFC is validated through simulation and hardware in a loop
simulation (HILS) [26,27].

2. FCHEV configuration

The FCHEV has several configurations according to the topology

of the power sources, types and sizes. A parallel hybrid type was
adopted, as shown in Fig. 1. In this structure, the fuel cell power,
which is supplied to a battery and/or a traction motor, can be con-
trolled using a d.c.–d.c. converter. Specifically, the current from the
fuel cell stack can be governed by controlling the d.c.–d.c. converter.
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nlike a configuration which has no a d.c.–d.c. converter, this type
f FCHEV prevents the abrupt current draw from the fuel cell, and
hus solves the oxygen starvation problem.

. Electric powertrain model of parallel hybrid type FCHEV

In this study, the electric powertrain model of the FCHEV con-
ists of three components: a dynamic fuel cell stack system model,
d.c.–d.c. converter and a battery model.

.1. Fuel cell stack system model

The model of the fuel cell stack system derived by Pukrushpan et
l. [28] was used in this study. The model is composed of auxiliary
omponents and the fuel cell stack and was obtained for the 75 kW
tack in the FORD P2000 fuel cell prototype vehicle. The auxiliary
omponents support efficient and effective operation of the fuel
ell. The subsystems of the auxiliary components are a compressor,
supply manifold, an air cooler and humidifier, and a return man-

fold. It is assumed that the air cooler and humidifier maintain the
emperature and humidity of the air entering the stack at constant
alues of 80 ◦C and 100% respectively. Additionally, the stack tem-
erature is assumed to be held constant at 80 ◦C by a well-designed
ooling subsystem. This is because the change in stack temperature
s relatively slow.

The fuel cell stack model integrates a stack voltage model, a cath-
de flow model and an anode flow model. The type of fuel cell is
polymer electrolyte fuel cell (PEFC). Accordingly, the water con-

ent in the PEFC dominates the performance of the fuel cell [29]. It is
ssumed that the membrane is always hydrated in vapour equilib-
ium state, so that the water content in the membrane is maintained
t 14 [30]. A fuel cell stack has many cells to increase the voltage
hat are connected in series. It is assumed that the performance
f each cell is uniform, and that the stack voltage is calculated
y the product of the number of cells and the voltage of a single
ell.

.2. d.c.–d.c. converter model

In order to raise the fuel cell stack voltage, a boost-type d.c.–d.c.
onverter [31] can be utilized. The dynamic behaviour of the boost
onverter is determined according to the commutation mode of
he transistor [31] and its mathematical model can be obtained by
pplying Kirchhoff’s voltage and current laws (KVL and KCL).

.3. Battery model

The battery type was a 25 kW Li-ion unit from ADVISOR [32].
n internal resistance model described the chemical behaviours of

he battery using an electrical equivalent circuit as if it were a per-
ect open-circuit voltage (OCV) source in a series with an internal
esistance.

.4. State–space model of FCHEV electric powertrain

By integrating the three electric component models the electric
owertrain was constructed, as shown in Fig. 2. A traction motor
cts as a load and was represented as a current source. The load
urrent (iload) was varied with the required power to drive the

CHEV.

In accord with modeling of the d.c.–d.c. converter, the equivalent
ircuit model can also be analyzed by the commutation mode of the
ransistor. When the transistor is ON, the equations related to the
nductor current (ist) and capacitor voltage (vC) are obtained by the
Fig. 2. The equivalent circuit model of the electric powertrain.

KVL and KCL, as expressed by:

vst = LDCDC
dist

dt
+ rList, (1)

voc = rintibatt + vbus, vbus = rCiC + vC,

voc = rint(iload + iC) + rCiC + vC,

CDCDC
dvC

dt
= − 1

rint + rC
vC − rint

rint + rC
iload + 1

rint + rC
voc.

(2)

When the transistor is OFF, the following equations are derived
by the KVL and KCL:

vst = LDCDC
dist

dt
+ rList + vbus = LDCDC

dist

dt
+ rList + rCCDCDC

dvC

dt
+ vC,

(3)

ist + ibatt = iC + iload, ibatt = voc − vbus

rint
,

CDCDC
dvC

dt
= rint

rint + rC
ist − 1

rint + rC
vC − rint

rint + rC
iload + 1

rint + rC
voc.

(4)

Finally, considering d, the commutation mode of the transis-
tor [33], the derivatives of the inductor current and the capacitor
voltage can be calculated using Eqs. (5) and (6):

dist

dt
=
{

− rL

LDCDC
− rintrC(1−d)

(rint+rC) LDCDC

}
ist+
(

−1 + rC

rint + rC

) vC (1 − d)
LDCDC

+ rintrC (1 − d)
(rint + rC)LDCDC

iload + vst

LDCDC
− rC(1 − d)

(rint + rC)LDCDC
voc, (5)

dvC

dt
= rint(1 − d)

rint + rC

ist

CDCDC
− 1

rint + rC

vC

CDCDC

− rint

rint + rC

iload

CDCDC
+ 1

rint + rC

voc

CDCDC
. (6)

As you can see in Eqs. (5) and (6), variable d can determine the
fuel cell current (ist) and the capacitor voltage (vC) Thus it is possible
to control the fuel cell power to load and/or battery using variable
d. Therefore, d is the control input of the FCHEV electric powertrain.
A real control system of the d.c.–d.c. converter generates d which
takes the value 1 or 0 and has a high frequency of more than sev-
eral tens of kHz. This research concentrates on the development of
an efficient power distribution controller to achieve minimum fuel
consumption and maintain the battery SoC during vehicle oper-
ation. To do this, simulation work is performed for given driving

cycles of the vehicle. Since, however, driving cycles have running
times of more than hundreds of seconds and d should be updated
with a time step of hundreds of microseconds, the simulation time
becomes very long. In order to reduce the simulation time, an aver-
age value model was used in which the control input d takes a value
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Fig. 3. The control strategy using the fuzzy controller.

f between 0 and 1 and matches the duty ratio (commutation period
f the transistor) [33]. Thus, the simulation work could be per-
ormed without considering switching operation. It is reasonable
o use an average value model, because research is focused on the
evelopment of a power distribution controller and not switching
ontrol of the d.c.–d.c. converter.

Next, the state–space model (Eq. (7)) of the FCHEV electric pow-
rtrain was formulated from Eqs. (5) and (6):

i̇st

v̇C

]
=

⎡
⎣− rL

LDCDC
− rintrC(1 − d)

(rint + rC)LDCDC

(
−1 + rC

rint + rC

)
(1 − d)
LDCDC

rint(1 − d)
rint + rC

− 1
rint + rC

⎤
⎦[ ist

vC

]

+

⎡
⎣ rintrC (1 − d)

(rint + rC)LDCDC

1
LDCDC

− rC(1 − d)
(rint + rC)LDCDC

− rint

rint + rCCDCDC
0

1
(rint + rC)CDCDC

⎤
⎦
[

iload

vst

voc

]
. (7)

Moreover, the bus voltage and the battery current were obtained
sing these states and input variables, as given by:

vbus

ibatt

]
=

⎡
⎢⎣

rintrC(1 − d)
rint + rC

rint

rint + rC

−rC(1 − d)
rint + rC

−1
rint + rC

⎤
⎥⎦
[

ist

vC

]

+

⎡
⎢⎣− rintrC

rint + rC
0

rC

rint + rC

rC

rint + rC
0

1
rint + rC

⎤
⎥⎦
⎡
⎢⎣

iload

vst

voc

⎤
⎥⎦ . (8)

In order to include the SoC as one of states in the state–space
odel, the relation of the SoC and the battery current was obtained

s follows:

SoC(t) = SoC0 − �batt

Qmax

∫ t

0

ibattdt,

dSoC(t)
dt

= − �batt

Qmax
ibatt.

(9)

Therefore, the derivative of the SoC can be inserted into the
tate–space model as shown by:

i̇st

v̇C

SȯC

]
=

⎡
⎢⎢⎢⎣

− rL

LDCDC
− rintrC(1 − d)

(rint + rC)LDCDC

(
−1 + rC

rint + rC

)
(1 − d)
LDCDC

0

rint(1 − d)
(rint + rC)CDCDC

− 1
(rint + rC)CDCDC

0

rC(1 − d) × �batt

Qmax(rint + rC)
1 × �batt

Qmax(rint + rC )
0

⎤
⎥⎥⎥⎦
[

ist

voc

SoC

]
+

vbus

ibatt

]
=

[ rintrC(1 − d)
rint + rC

rint

rint + rC
0

−rC(1 − d)
rint + rC

−1
rint + rC

0

][
ist

vC

SoC

]
+

[
− rintrC

rint + rC
0

rC

rint + rC

rC

rint + rC
0

1
rint + rC

][

. Fuzzy controller for power distribution in FCHEV
In this study, the fuzzy controller has been proposed to achieve
ower fuel consumption and SoC maintenance of the FCHEV; the
ontrol strategy is shown in Fig. 3. The fuzzy controller generates a
esired fuel cell current instead of the desired fuel cell power. This
rces 195 (2010) 5735–5748

rintrC(1 − d)
rint + rC)LDCDC

1
LDCDC

− rC(1 − d)
(rint + rC)LDCDC

rint

(rint + rC)CDCDC
0

1
(rint + rC)CDCDC

−rC × �batt

Qmax(rint + rC)
0

−1 × �batt

Qmax(rint + rC)

⎤
⎥⎥⎦
[

iload

vst

voc

]
, (10)

. (11)

control scheme has been used in two previous studies for the FCHEV
power distribution control [16,17]. This is because the dynamic fuel
cell stack system model [28] was employed in the research. The
dynamic fuel cell stack system model requires the fuel cell current
as an input instead of the power. Actually, the fuel cell power can
be controlled by modulating the fuel cell current.

The above method, however, was modified to control the incre-
ment of the fuel cell current. The fuzzy controller decides the
derivative value of the desired fuel cell current (didesired

st /dt) to
prevent an abrupt change in the desired fuel cell current. In the
previous studies [13–16], the fuel cell stack was operated without
quick generation of fuel cell power, because of oxygen starvation
or a compressor choke. In fact, the most direct cause of the above
problems is not quick power generation but abrupt increase in fuel
cell current. This is due to the fact that air mass flow into the fuel
cell is determined by the stoichiometry ratio and fuel cell current
[28]. Accordingly, in this research, the fuzzy controller is designed
to determine the derivative value of the fuel cell current. A maxi-
mum of the derivative value is limited at a high value where oxygen
is not starved. Then, the desired fuel cell current is calculated by
integrating the derivative value (see Fig. 4).

In previous researches on FCHEVs [14,16,17,19], the required
power and the SoC were used for inputs. The required power, how-
ever, cannot provide information about variation in the required
power. It is necessary to know the variation of the required power
so as to generate the desired derivative value of the fuel cell
current. Thus, the required power should be differentiated. Since
differentiation is sensitive to sensor noise, however, it is needed
to avoid differentiation. Hence, in this research, the bus voltage
is used instead of differentiation of the required power. If the
required power increases abruptly, there is a large fall in bus volt-
age. Conversely, a rapid decline in the required power causes a
large increase in bus voltage. When the battery absorbs regenera-
tive braking energy, the bus voltage also rises. This control concept
offers a fundamental reason why a dynamic electric powertrain
model has to be used; previously, the power control strategies were
designed using static or quasi-static powertrain models, which
could not describe the behaviour of the bus voltage. Thus, it is
impossible to design power control strategies that can consider the
bus voltage of the electric powertrain.

Finally, the fuzzy controller inputs are the bus voltage of the
electric powertrain and the current SoC level of the battery. Using
these two states, the fuzzy controller determines the required cur-
rent from the fuel cell. It is then delivered to the duty controller
for regulating the d.c.–d.c. converter, as shown in Fig. 3. The duty
controller yields the duty ratio to track the desired fuel cell current.

The difference from the reference value of each control target
state (the bus voltage and the SoC) can offer information pertaining
to high or low current states. Thus, the inputs of the fuzzy controller
are the bus voltage error and the SoC error. The errors are defined
as:

eSoC = SoCref − SoC, eV = vref
bus − vbus. (12)
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The internal structure of the fuzzy controller is depicted in Fig. 4.
Regarding the fuzzy controller, the rule base has to be defined

o represent the human knowledge needed for controlling a tar-
et system [34]. For the power distribution of the FCHEV, this
tudy derived the fuzzy rule base which can satisfy the required
ower and maintain the battery SoC using the above two inputs. For
xample, if the SoC level and the bus voltage are higher than their
espective reference values, the fuel cell current can be decreased.
n the contrary, if the SoC and the bus voltage are lower than the

eferences, a high increase of the fuel cell current may be needed to
atisfy both the bus voltage regulation and the SoC maintenance. An
brupt increase in the power supplied from the fuel cell, however,
hould be avoided. These strategies, which are derived from the
nowledge based on the physical phenomena of the electric circuit,
ecome the fuzzy rule base. In this study, the MFs of the fuzzifier
nd defuzzifier have a common structure, which is composed of
he triangular membership illustrated in Fig. 5. Using the linguistic
ariables from each of the MFs and above strategies, the IF-THEN
ules can be derived and then rearranged as shown in Table 1.

. Optimization of fuzzy controller using a genetic
lgorithm

A genetic algorithm is a search technique developed to find an

xact or approximate solution for optimization or a search problem.
n this study, a GA was employed to find an optimized MF set for
he fuzzy controller.

able 1
ule base.

eSoC

eV NB NM NS Z PS PM PB

NB NB NB NB NB NM NS Z
NM NB NB NB NM NS Z PS
NS NB NB NM NS Z PS PM
Z NB NM NS Z PS PM PB
PS NM NS Z PS PM PB PB
PM NS Z PS PM PB PB PB
PB Z PS PM PB PB PB PB
of the fuzzy controller.

5.1. Optimization design variables

In order to search the optimum MFs in an attempt to reduce the
fuel consumption and sustain the SoC level, MF points were selected
as the optimization design variables. The MF points for the input
and output spaces are shown in Fig. 5.

Among the fuzzy controller inputs, the SoC error was employed
like Eq. (12) in Section 4. The SoC error is determined as the devi-
ation from the SoC reference. Hence, the SoC reference affects the
control performance of the fuzzy controller. Specifically, a trade-off
problem exists in determination of the SoC reference value. This is
because the high SoC reference induces an increment in fuel cell uti-
lization and thus the stack is frequently operated in a low-efficiency
region. Otherwise, battery utilization increases and the battery may
be depleted during travel. Therefore, the SoC reference should be
optimized for low fuel consumption and SoC maintenance.

Finally, the optimization design variables of the fuzzy
controller are nine points (oMFa1 , oMFb1

, oMFc1 , oMFa2 , oMFb2
,

oMFc2 , oMFa3 , oMFb3
, oMFc3 ) in MFs of the inputs and outputs, and

the SoC reference (oSoCref).

5.2. Genetic algorithm

The structure of a population in the GA is decided by the number
of individuals (nP) and its genes (nGene). Each individual has the
entire optimization design variables.

A fitness function should be designed considering the influence
of the fuel consumption and the SoC deviation so as to find the opti-
mum design variables of the fuzzy controller. In order to evaluate
the fuel consumption of the FCHEV and then compare it with that of
a conventional engine vehicle, an energy equivalent of the hydro-
gen usage was analyzed in terms of the gasoline litre equivalent per
kilometer (GLEPK):

GLEPK =
LHVH2 ×

∫ tF

0
WH2 dt

Distance
× 100

LHVGas × �Gas
. (13)

This measures how many litres of gasoline consumed for the
equivalent energy of hydrogen for 100 km travel of the FCHEV. In
addition, in order to prevent a large deviation between the final
and the initial SoC, an absolute value of the SoC deviation was also
considered as given by:∣∣�SoC

∣∣ =
∣∣SoCf − SoC0

∣∣ . (14)

Finally, a fitness function was defined using following equation
with normalization:

Fit = 1
˛ + ˇ

⎡
⎣˛ × GLEPK

GLEPKtarget
+ ˇ ×

( ∣∣�SoC
∣∣∣∣�SoCtarget
∣∣
)2
⎤
⎦ , (15)
where GLEPKtarget and �SOCtarget are minimal target values, ˛ +
ˇ = 1.

As observed in Eq. (15), the fitness function reflects the effect of
the GLEPK and the SoC deviation.
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Fig. 7. The speed and required power profile of the UDDS.

Table 2
Statistical features of selected driving cycles.

Driving cycle UDDS HWFET

Time [s] 1369 765
Distance [km] 11.99 16.51
Maximum speed [km h−1] 91.25 96.4

T
D

Fig. 6. The speed and required power profile of the HWFET.

. Optimization using driving cycles

The design variables of the fuzzy controller have been optimized
sing the GA. The fitness function is evaluated through a driv-

ng cycle simulation of the respective individual generations and
t offers criteria to determine an optimum set of design variables
or the fuzzy controller. Therefore, the electric powertrain model
f the FCHEV was implemented in SIMULINK® in order to perform
he simulation for a given driving cycle.

.1. Base driving cycles

Driving cycles can be sorted into two basic types: a highway
riving cycle and a city driving cycle. In a highway driving, the

dle time may be either short or zero and vehicle speed does
ot vary greatly. In city driving, an idle state frequently occurs
hile the vehicle is in use, and vehicle speed varies widely. Thus,
ischarge and charge operation of the battery can occur actively
ue to a rapid power demand and regenerative braking. Hence,
hen driving in cities, an increase in battery utilization through an

ggressive charge and discharge operation can enhance fuel econ-
my. Conversely, since quick power demand and aggressive battery
peration rarely take place in highway driving, reduced battery uti-
ization can help to lower fuel consumption and sustain battery SoC
n suitable range.

Consequently, in this study, highway and city cycles were
dopted as benchmarks so as to find the best sets of the optimiza-
ion design variables. The two driving cycles employed were the
ighway federal emissions test (HWFET) for highway driving and
he urban dynamometer driving schedule (UDDS) for city driving
35]. The UDDS cycle is also called U.S. FTP-72 (Federal Test Proce-
ure) cycle or LA-4 cycle. The profiles of speed and required power
or the two driving cycles shown in Figs. 6 and 7. The statistical
eatures of each driving cycle are listed in Table 2 [36].
After driving cycle simulations for an individual in the pop-
lation, the hydrogen consumption and the SoC deviation are
valuated. The hydrogen consumption is then converted to the
LEPK and miles per gallon of gasoline equivalent (MPGGE);
PGGE measures how many miles the FCHEV can travel on the

able 3
esign variables of baseline.

G1 G2 G3 G4 G5

oMFa1 oMFb1
oMFc1 oMFa2 oMFb2

10 20 45 0.15 0.3
Average running speed [km h−1] 31.51 77.58
Average acceleration [m s−2] 0.5 0.19
Average deceleration [m s−2] −0.58 −0.22
Idle time [s] 259 6

equivalent energy of one gallon of gasoline. A MPGGE is calculated
as follows:

MPGGE = 1

(GLEPK/100) ×
[

0.264172 gal
1 L

]
×
[

1 km
0.539612 mile

] [mpg].

(16)

6.2. Baseline set of design variables

A baseline fuzzy controller was configured in order to present
a criterion for a comparison of control performance. The design
variables of the baseline are given in Table 3. The GA describes the
evolution process which starts from the initial population. In this
research, the baseline was used as an individual in the initial popu-
lation of the GA process so as to obtain a better controller than the
baseline set.

The MPGGEs were 56.38 and 48.18 mpg, respectively. For the
HWFET cycle, the fuel consumption was lower than that of the
UDDS cycle, because its operation stays in the high efficiency range,
as can be seen in Fig. 8. In the UDDS cycle, on–off operation of the
fuel cell stack system is frequently encountered and causes the fuel
cell operation to fall into a lower efficiency range. In Fig. 8, the red

dashed-line indicates the fuel cell efficiency when the fuel cell oper-
ates on steady-state. As seen, the fuel cell efficiency points were
dispersed near the steady-state operation line.

Hence, in the UDDS cycle, the frequent on–off operation of the
fuel cell should be prevented and the battery utilization has to rise

G6 G7 G8 G9 G10

oMFc2 oMFa3 oMFb3
oMFc3 oSoCref

0.45 3 10 15 0.5
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Fig. 8. The fuel cell stack efficiency

Table 4
Target values in fitness function.
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SoC maintenance. Furthermore, in Fig. 10, it is shown that the opti-

T
O

T
M

Target MPGGE [mpg] (GLEPK [L/100 km]) Target |�SoC| [%]

HWFET 59.20 (3.44) 1.5
UDDS 50.59 (4.03) 1.5

hrough the aggressive operation of charge and discharge by the
attery, in order to attain enhanced fuel economy. By performing
ptimization of the design variables, it is possible to design the
ower distribution controller, which follows the above descrip-
ion for the optimum power management according to base driving
ycles.

.3. Optimization results
The target values in the fitness function (see Eq. (15)) were
hosen as shown in Table 4. The target value of fuel consump-
ion was determined at 5% enhancement with respect to the

PGGE of the baseline set, depending on each driving cycles.

able 5
ptimized set for HWFET and UDDS cycles.

G1 G2 G3 G4 G5

HWFET 21.41 46.54 84.96 0.08 0.1
UDDS 20.55 53.48 79.72 0.04 0.3

able 6
PGGE comparison of baseline and optimized sets.

MPGGE [mpg]

Baseline set Optimized set

HWFET 56.38 59.34
UDDS 48.18 51.56
of the baseline for two cycles.

The deviation between the initial and the final SoC (|�SoC|)
was limited to 1.5%; this target value was applied Kim and
Peng [17]. Since it is important to maintain the battery SoC
within a suitable range with respect to the power management
of a hybrid vehicle [17], ˛ and ˇ are chosen as 0.2 and 0.8,
respectively.

The GA optimization results for two driving cycles are given in
Table 5. The optimized set attains the enhanced MPGGEs, which are
more than 5% higher than the baseline set, as reported in Table 6. In
addition, although the baseline violates the target value of |�SoC|
(|�SoC| < 1.5%), the SoC maintenance problem site is well regulated
(|�SoC| ≤ 0.09%) when the optimized set is used. The data in Fig. 9
illustrate that the optimized set can prevent the frequent on–off
operation of the fuel cell at the early stage of the design phase. Thus,
the optimized sets can accomplish lower fuel consumption and the
mized set for the UDDS cycle induces a larger standard deviation
in battery power and SoC than those in the HWFET cycle. From this
result, it is verified that a more aggressive operation (charge and
discharge) of the battery is accomplished with the UDDS cycle.

G6 G7 G8 G9 G10

4 0.41 7.44 17.76 24.80 0.56
3 0.45 1.23 6.59 30.47 0.60

SoC [%]

Enhancement [%] Baseline set Optimized set

5.25 4.13 0.01
7.02 2.17 0.09
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Fig. 9. The efficiency of fuel cell stack

. Stochastic fuzzy controller (SFC)

.1. Adaptive membership functions of SFC

The adaptive membership function is a key component of the
FC to distribute power optimally between a fuel cell and a battery
n the FCHEV. Its operation concept is very simple. The transfor-

ation of the MFs in the SFC is illustrated in Fig. 11; the MFs can
e changed depending on the probability p(t). The probability rep-
esents the current driving pattern. Specifically, if the probability
ecomes close to one, this means that a current driving pattern
as the characteristics of urban driving. Conversely, if the proba-
ility approaches zero, the driving pattern has the characteristics of
ighway driving. Finally, the adaptive MFs (MFSFC) are determined
sing a convex combination which is a linear combination of two
oints. These two points (MFHWFET and MFUDDS) are provided by
he two optimized sets for the highway and urban driving cycles.

he following equation calculates the movement of the adjusted
F points of the SFC:

FSFC = MFUDDS × p(t) + MFHWFET × (1 − p(t)). (17)

Fig. 10. The comparison results of opti
he baseline set and the optimized set.

As seen, MFSFC becomes near to MFUDDS as p(t) approaches one;
otherwise, MFSFC comes close to MFHWFET. Specifically, the MFs
can be transformed to follow the optimized MF set according to
a current driving pattern. Therefore, the performance of the SFC is
directly affected by how exactly the probability recognizes a cur-
rent driving pattern. Accordingly, the probability is a key factor of
the SFC to achieve the optimum power distribution between the
two power sources.

7.2. Probability evaluation

In order to recognize driving patterns accurately, a probabil-
ity evaluation method, which uses statistical data for the required
power, is proposed in this section. In the city driving cycle, since
the variation of vehicle speed is large and rapid, the variation of the
required power is also wide. Conversely, in the highway cycle, the
speed variation is small and slow; thus, the required power does

not change greatly. Therefore, the dispersion of the required power
may offer statistical information that can be helpful in characteriz-
ing driving patterns. In this study, a standard deviation is used and
is a measure of the dispersion of collected values. A useful property
of standard deviation is that, unlike variance, it is expressed in the

mized sets for each driving cycle.
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if the time-horizon is too short, it is hard to recognize a driving
pattern adequately between highway driving and urban driving.
Fig. 11. Adaptive membership function of the SFC.

ame units as the data. Fig. 12 includes average value (Mean Power)
nd standard deviation (STD) of the required power for the HWFET
nd UDDS cycles.

The standard deviation of the UDDS cycle is higher than that of
he HWFET but its difference is very small. On the other hand, the
atio of the standard deviation to the average value in the UDDS
ycle is larger than that in the HWFET cycle. For actual driving, the
valuation of the power variation should be considered to be the
atio of standard deviation to average power. If the standard devi-
tions are similar to each other and the difference of each average
ower is much larger, then the effect of the power variation which
as a low average power should be regarded as large and severe.
ence, in this study, the ratio of standard deviation to average
ower was applied to evaluate the probability.

Since it is impossible to obtain the standard deviation and the
verage of the required power as prior-knowledge before running
he vehicle, these values have to be calculated in real-time while
riving. Accordingly, they can be predicted by using values from
ata collected for a given time period. In other words, a moving
tandard deviation and moving average were used in this study.

hey are referred as a statistical technique used to analyze a set of
ata points by creating a standard deviation and an average for
ne subset of the full data set at a time. They are computed as

Fig. 12. The average and the standard deviation of the
rces 195 (2010) 5735–5748 5743

follows:

Pt1req =
[
P1

reqP2
reqP3

req . . . PN
req

]
, Pt2req =

[
P2

reqP3
req . . . PN

reqPN+1
req

]
,

Pt1,avg
mov = sum(Pt1req)

N
, Pt1,STD

mov =
(∑N

1 (PN
req − Pt1,avg

mov )

N

)1/2

,

Pt2,avg
mov = sum(Pt2req)

N
, Pt2,STD

mov =
(∑N+1

2 (PN
req − Pt2,avg

mov )

N

)1/2

.

(18)

Finally, the probability is evaluated as:

p(t) =

⎡
⎢⎢⎢⎢⎢⎣

1, if
Pt,STD

mov

Pt,avg
mov

> 1,

Pt,STD
mov

Pt,avg
mov

, if 0 ≤ Pt,STD
mov

Pt,avg
mov

≤ 1,

0, if
Pt,STD

mov

Pt,avg
mov

< 0.

(19)

In this probability, the tuning parameters are a sampling period
and a time-horizon, which define a time-period for data collec-
tion and time-length for calculating statistics, respectively. Since
the change of the required power is dependent on the driver’s
acceleration pedal input and its variation is not too large or
fast, the sampling period can be determined easily. Typically,
the vehicle speed data for driving cycles are collected every
1 s and thus the sampling period was chosen to 0.1 s in this
study.

In order to choose an appropriate time-horizon, it is neces-
sary to analyze the effects of the time-horizon on the response
of the probability evaluation. The longer the period of the time-
horizon, the slower is the driving pattern recognition. By contrast
This is due to the fact that the variation of the moving average
is rapid and large regardless of a driving pattern. The problem
becomes more severe for the UDDS as shown in Fig. 13. The

required power for the HWFET and the UDDS.
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Fig. 13. The analysis results of the HWFET cycle and the UDDS cycle for short time-
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Unified Cycle Driving Schedule (UCDS) and the New European Driv-
ing Cycle (NEDC). The cross-correlation between the four driving
cycles is given in Table 7. The UCDS cycle and NEDC cycle are urban
orizon.

esults of well-tuned parameters are described in Fig. 14. The time-
orizon was 60 s and the probability was refreshed every 0.1 s in
ccordance with the sampling period. As can be seen in Fig. 14,
serious rapid change of the probability does not appear and it

eflects individual characteristics of own driving cycle. These tuning
esults of the probability evaluation can be simply obtained through
n analysis of the required power data. Therefore, it is fast and
asy.

In signal processing, cross-correlation is a measure of the simi-
arity of two waveforms as a function of a time-lag applied to one
f them. A cross-correlation between the probabilities of the two
riving cycles is 0.8462 at zero lag time. This indicates that the
robabilities are very similar each other. Therefore, the probability
valuation should be modified in order to distinguish clearly the
wo driving cycles. In this research, the probability is revised using
Fig. 14. The analysis results of the two cycles for 60 s time-horizon.
Fig. 15. The revision function for the probability.

following function:

p′(t) =
[

�(1 − e−�a(p(t)−0.5)) + 0.5 if p(t) ≥ 0.5
−�(1 − e�a(p(t)−0.5)) + 0.5 if p(t) < 0.5

,

pmodified(t) =
[

1 if p′(t) > 1
p′(t) if 0 ≤ p′(t) ≤ 1

0 if p′(t) < 0
.

(20)

The revision function is shown graphically in Fig. 15. The respec-
tive modified probabilities are obtained as shown in Fig. 16. Using
these modified probabilities, the cross-correlation is calculated
again. The cross-correlation is very low i.e., 0.2029, at zero lag time.
Thus, the modified probability can provide more exact information
on a given driving cycle.

Since there are many driving cycles specific to a particular
location, society and county, more simulations are needed to inves-
tigate further the performance of power control strategies. In this
study, an additional two driving cycles were chosen, namely, the
driving cycles because they have a high correlation with the UDDS

Fig. 16. The modified probabilities for two driving cycles.
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Table 7
Test cases of off-line simulations.
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Table 9
MPGGEs and |�SoC| for HWFET cycle.

BASE HWFET OPT UDDS OPT SFC

MPGGE 56.38 59.35 57.09 59.96
Ranking - 2* - 1*
|�SoC| [%] 4.13 0.01 4.80 1.09
Constraint X O X O
Max �SoC [%] 4.23 0.11 4.80 0.13
Min �SoC [%] −0.59 −3.77 −2.29 −3.35

(*) Means higher ranks than third position. (-) Means that |�SoC| is larger than target
value 1.5%. If |�SoC| < 0.015 (1.5%), than O, else X.

Table 10
MPGGEs and |�SoC| for UDDS cycle.

BASE HWFET OPT UDDS OPT SFC

MPGGE 48.18 52.61 51.56 51.42
Ranking - - 1* 2*
|�SoC| [%] 2.17 2.71 0.09 0.11
Constraint X X O O
Max �SoC [%] 15.63 0.06 2.81 3.29

T
C

HWFET-UCDS HWFET-NEDC UDDS-UCDS UDDS-NEDC

Correlation 0.2732 0.2568 0.9179 0.8613

ycle, as reported in Table 7.

. Results of off-line simulation and hardware-in-the-loop
imulation (HILS)

This section presents the results of simulation studies and HILS
ests to validate the performance of the SFC for power distribution
n a FCHEV. Compared with the baseline set and the optimized fuzzy
ontrollers, the performance of the SFC is verified for the four diving
ycles: HWFET, UDDS, UCDS, NEDC. As mentioned above in Section
, the power distribution between two power sources is an impor-
ant factor for minimum fuel consumption and maintenance of
attery SoC. Accordingly, the performance of each controller should
e evaluated in terms of the MPGGE and the SoC deviation (|�SoC|).
herefore, the MPGGE and |�SoC| provide criteria for choosing the
est controller. Finally, the best power control strategy is imple-
ented on a real electronic control unit (ECU), which is then tested

sing a HILS environment in order to check a realization problem
f the power control strategy and verify its performance in the real
orld. Test cases for the off-line simulation are given in Table 8.

.1. Off-line simulation results

.1.1. Results for HWFET cycle
The MPGGEs and |�SoC| for the HWFET cycle are reported in

able 9. The information that the SFC has the maximum MPGGE
hich is similar to the value of the HWFET OPT. The MPGGE of the
DDS OPT, however, is lower than those of the HWFET OPT and

he SFC. As can also be seen in Table 9, BASE and UDDS OPT violate
he |�SoC| target value (|�SoC| < 1.5%). On the contrary, the SoC

aintenance problem is well regulated (|�SoC| ≤ 1.09%) when the
WFET OPT or the SFC is used.

The simulation results of the SFC show that the SFC can trans-
orm its own MFs to the optimized set according to the current
riving pattern. On the other hand, the performance of the UDDS
PT is not satisfactory in terms of fuel consumption and SoC devia-

ion. This is due to fact that the UDDS OPT is a controller optimized
or the UDDS cycle. Therefore, this result indicates that a controller
ptimized using a specific driving cycle is not applicable to the other
ycles.

.1.2. Results for UDDS cycle
For the UDDS cycle, the results of the MPGGEs and |�SoC| are

resented in Table 10. The HWFET OPT has the largest MPGGE and
he UDDS OPT is ranked second. The HWFET OPT, however, is not
uitable for optimum power control strategies because the |�SoC|

arget value (1.5%) is violated. Therefore, the best controller for the
DDS cycle is the UDDS OPT, which is followed by the SFC.

The SFC has a MPGGE that is close to, or higher than, that of
he optimized set for the two driving cycles (see Tables 9 and 10)
s the intended results at early stage of design phase. In addition,

able 8
ross-correlation for four driving cycles.

Fuzzy controllers

1 2

HWFET Baseline set Optimized set fo
UDDS Baseline set Optimized set fo
Abbreviations BASE HWFET OPT
Min �SoC [%] −0.49 −3.79 −1.82 −3.15

(*) Means higher ranks than third position. (-) Means that |�SoC| is larger than target
value 1.5%. If |�SoC| < 0.015 (1.5%), than O, else X.

the |�SoC| of the SFC is maintained within the target value. Hence,
the proposed probability evaluation is found to be suitable for the
recognition of a driving pattern and stochastic approaches to the
power control of the FCHEV.

The MPGGE values for the driving cycle optimized sets (HWFET
OPT, UDDS OPT) in Tables 9 and 10 indicate that the optimized sets
reveal mutually exclusive results for the driving cycles. In other
words, for the HWFET cycle, the fuzzy controller which adopts the
UDDS OPT induces a much lower MPGGE than the HWFET OPT.
For the UDDS cycle, although the HWFET OPT has a higher MPGGE
than the other optimized set, it cannot satisfy the |�SoC| target
value. Therefore, these simulation outcomes demonstrate that only
one optimization result is unable to guarantee the optimum per-
formance despite a change in cycle.

8.1.3. Results for UCDS cycle
The California Unified Cycle (UC) is a dynamometer driving

schedule for light-duty vehicles that has been developed by the
California Air Resources Board. The test is also referred to as the
UCDS [37]. The properties of the UCDS cycle, such as vehicle speed,
required power and probability are shown in Fig. 17. The statisti-
cal features of the UDDS are given in and the Table 11. UCDS. The
UCDS cycle has a long idle time and an average acceleration that
is high, as found with the UDDS. In addition, the probability and
the cross-correlation (see Fig. 17 and Table 7) also show that the
UCDS cycle is an urban driving mode. Therefore, the simulation is
executed using the test case for the UDDS in Table 8.

The MPGGE results for the two optimized sets (see Table 12)
show that the optimized set (UDDS OPT) for the corresponding driv-

ing cycle has a lower MPGGE than the HWFET OPT does. The HWFET
OPT, however, cannot meet the |�SoC| target value and is thus not
suitable as a power control strategy. In summary, the best power
control strategy is the SFC.

3 4

r HWFET Optimized set for UDDS SFC
r HWFET Optimized set for UDDS SFC

UDDS OPT SFC



5746 J. Ryu et al. / Journal of Power Sources 195 (2010) 5735–5748

8

(
U
a
h
U
F
d
c

i
i
b
c
c
p
4
l
e

T
S

T
M

(
v

Fig. 18. The speed, required power profile and probability of the NEDC.
Fig. 17. The speed, required power profile and probability of the UCDS.

.1.4. Results for NEDC cycle
The NEDC is a driving cycle that consists of four repeated ECE

Economic commission for Europe) driving cycles and an Extra-
rban driving cycle, or EUDC [38]. The properties of the NEDC cycle
re presented in Fig. 18. As shown in Table 11, the NEDC cycle also
as a long idle time and the average acceleration is high, as for the
DDS. In addition, the probability and the cross-correlation (see
ig. 18 and Table 7) also show that the NEDC cycle is an urban
riving mode. Therefore, the simulation is performed using the test
ase for the UDDS in Table 8.

From the MPGGE results of the two optimized sets (see Table 13),
t is found that the optimized set (UDDS OPT) for the correspond-
ng driving cycle has a lower MPGGE than the HWFET OPT. This is
ecause the NEDC cycle is not a complete city cycle like the UDDS
ycle, but a mixed cycle that has the characteristics of a highway
ycle and an urban cycle. This is demonstrated by the fact that the

robability shows the characteristics of a highway cycle for the last
00 s, as can be seen in Fig. 18; therefore, the probability is much

ower than one after approximately 800 s. Thus, since the SFC can
stimate a current driving pattern successfully and transform the

able 11
tatistical features of UDDS, UCDS and NEDC cycles.

Driving cycle UDDS UCDS NEDC

Time [s] 1369 1435 1184
Distance [km] 11.99 15.8 10.93
Maximum speed [km h−1] 91.25 108.15 120
Average running speed [km h−1] 31.51 39.6 33.21
Average acceleration [m s−2] 0.5 0.67 0.54
Average deceleration [m s−2] −0.58 −0.75 −0.79
Idle time [s] 259 234 298

able 12
PGGEs and |�SoC| for UCDS cycle.

BASE HWFET OPT UDDS OPT SFC

MPGGE 45.96 49.87 48.57 49.23
Ranking - - 2* 1*
|�SoC| [%] 10.55 1.73 0.88 0.88
Constraint X X O O
Max �SoC [%] 13.33 1.28 8.53 2.53
Min �SoC [%] −0.38 −3.77 −2.66 −2.88

*) Means higher ranks than third position. (-) Means that |�SoC| is larger than target
alue 1.5%. If |�SoC| < 0.015 (1.5%), than O, else X.
Fig. 19. Comparison of the fuel cell and battery power trajectory for the NEDC.

MFs effectively, it achieves a higher MPGGE than the UDDS OPT
and maintains |�SoC| within the target value. Fig. 19 describes the
trajectories of the fuel cell power and the battery power. The fuel

cell power of the SFC follows a trajectory that is connected to each
corresponding driving pattern. The fuel cell power of the SFC in the
initial 800 s time section is very similar to the result for the UDDS
OPT, but is very close to the trajectory of the HWFET OPT for the last

Table 13
MPGGEs and |�SoC| for NEDC cycle.

BASE HWFET OPT UDDS OPT SFC

MPGGE 48.69 50.33 48.21 50.75
Ranking - 2* - 1*
|�SoC| [%] 4.45 1.04 5.28 0.49
Constraint X O X O
Max �SoC [%] 4.67 1.25 5.41 1.66
Min �SoC [%] −0.76 −5.07 −3.91 −3.72

(*) Means higher ranks than third position. (-) Means that |�SoC| is larger than target
value 1.5%. If |�SoC| < 0.015 (1.5%), than O, else X.
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Fig. 20. The network-based pow

00 s. The same trends are observed for the trajectories of battery
ower.

From the results of the four diving cycles, it is verified that the
est power control strategy is the SFC. Thus the SFC will be imple-
ented on a real ECU in order to test the feasibility of the control

lgorithm in real-time application.

.2. HILS test

The physical configuration of a HILS environment is composed
f a command station and a target node. In the command station, an
ngineer designs a mathematical model and runs its off-line simu-
ations. Furthermore, a HILS model for a real-time simulation is also
enerated at this station. In the target node, the HILS model is trans-
erred from the command station so that the real-time simulation
f the HILS model can be executed. In this study, a MPC564EVB,
hich is a MPC564®-based evaluation board [39], was employed

s an ECU for developing the SFC in a real application. The xPC
arget solution of MATLAB®/SIMULINK® [40] served as the target
ode.

.2.1. Network-based power management system of FCHEV
In this study, it is assumed that several controllers are integrated

sing a network and thus, controllers can exchange information
or the optimum power management of a FCHEV by using the net-
ork bus. When a control system is networked, it can not only

hare mutual data, but also extend its functionalities throughout
he modulation of the control system [41]. A schematic diagram of
he FCHEV’s network-based control system developed in this study
nd signal flow is given in Fig. 20. The controller area network (CAN)
rotocol was applied as a network protocol [42].

The network-based power management system of the FCHEV
s configured with a supervisor controller, a battery management
ystem (BMS) and a motor control unit (MCU). The supervisor con-

roller conducts not only the power management, but also serves as
fuel cell controller. Therefore, the stochastic fuzzy control algo-

ithm is embedded in the supervisor controller. The SFC requires
our inputs: the stack current, the bus voltage, the battery SoC and
he probability. Its output is the duty ratio. The stack current and
nagement system of the FCHEV.

the bus voltage are measured using queued analog-to-digital con-
verter (QADC) modules in MPC564® and the battery SoC value is
received from the BMS using the CAN bus. Finally, the duty ratio is
transferred to a PWM generator via the network; the PWM genera-
tor is a smart actuator [41] and is able to operate independently as
it is installed in the d.c.–d.c. converter. In this study, the PWM gen-
erator is implemented virtually in the target node and simulated in
real-time.

The BMS checks and manages battery states, such as tempera-
ture and current flow. In addition, the BMS estimates the SoC level of
the battery and sends the value to the supervisor controller through
the network. It also virtually operates in the target node. The MCU
plays controls motor torque and speed in order to meet the power
demand of drivers. It is assumed that a motor can be perfectly con-
trolled by the MCU, and it is analyzed as a current source in this
research. The MCU also monitors the motor power consumed for
a certain period and calculates its moving average and standard
deviation. Then, the probability is calculated and transmitted to the
supervisor controller via the CAN bus. Consequently, the supervisor
controller is only a real ECU, with the others operate virtually in the
target node. The stochastic fuzzy control algorithm is embedded in
the supervisor controller.

8.3. Results of HILS test

The HILS test of the SFC was conducted for the four driving cycles
in order to confirm that the proposed power control strategy would
be available for practical power distribution in FCHEVs.

The HILS test gives very similar results for the duty, fuel
cell power, battery power, and SoC. Thus, the MPGGE has an
almost identical value to that for the off-line simulation; the
errors with respect to the off-line simulation value are given in
Table 14. These small errors between the off-line simulation and

the HILS results are induced by data loss, which can occur dur-
ing two signal conversion processes: digital-to-analog conversion
in the target node and analog-to-digital conversion in the ECU.
Finally, the HILS results indicate that the SFC is suitable for a real
application.
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Table 14
HILS results of SFC for four driving cycles.

MPGGE [mpg] HWFET UDDS UCDS NEDC
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[38] http://www.dieselnet.com/standards/cycles/ece eudc.html.
[39] MPC564EVB User’s Manual, Freescale Semiconductor, Inc.
[40] MATLAB® R2007a Help.
Off-line simulation 59.96 51.42 49.23 50.75
HILS 60.006 51.535 49.310 50.828
Error [%] 0.0834 0.2331 0.1622 0.1571

. Summary and concluding remarks

The FCHEV is a prospective vehicle to solve global energy
upply and environmental problems. Significant investment is
eeded, however, to develop a commercial FCHEV. In particular,
ower management of the power sources is extremely challeng-

ng. Therefore, this study has proposed a novel power control
trategy for minimizing fuel consumption and maintaining battery
oC.

A the dynamic state–space model of the electric powertrain in
parallel-type FCHEV has been developed using an equivalent cir-

uit model of the electric powertrain, which consists of a fuel cell
tack system, a d.c.–d.c. converter, and a battery. It is possible to
bserve the dynamic behaviour of the fuel cell current and the bus
oltage. Using this model, a fuzzy controller is proposed the power
anagement of the FCHEV. Furthermore, a new method to prevent

xygen starvation in the fuel cell has been formulated and imple-
ented in the fuzzy controller. It is optimized by using a generic

lgorithm to achieve the maximum MPGGE and the SoC mainte-
ance for two driving cycles. The optimized fuzzy controller can
chieve MPGGE enhancement, i.e., 5.25% and 7.02% for the HWFET
ycle and the UDDS cycle respectively, while meeting the |�SoC|
arget value (|�SoC| < 1.5%).

Several power control strategies are proposed for the optimum
ower control of the FCHEV, e.g., DP, SDP, ECMS, and optimized
uzzy control with a GA. These strategies have a common problem
n that it is not possible to always guarantee optimum performance
or different driving cycles. Hence, the SFC is developed to achieve
ptimum results through a stochastic approach, even though the
riving cycle may change. In addition, an evaluation method of
he probability for driving pattern recognition is devised using the
nformation of the required power, which can be obtained during
ravel. The controller has been tested for four driving cycles, namely
WFET, UDDS, UCDS, and NEDC.

Finally, through off-line simulation and the HILS test, it has
een verified that the SFC with the proposed probability can not
nly be implemented in a real ECU, but also can attain min-
mum fuel consumption and SoC maintenance in a real-world
pplication.
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